
Development & Integration of Social Data
Connectors for Business Intelligence
Université de Technologie de Belfort-Montbéliard

David Hoeffel

January 31st 2016

Abstract

This document aims at presenting the theories & models developed as an
Associate I.T. Engineer Intern during my stay at ActSocial (now part of
Linkfluence) from August 2015 to January 2016.

My participation on various projects led me to question myself on how to
process big data in a way to offer a real-time visual exploration experience.

Topics covered include : REST programming, MVC architecture, Crawlers,
UI/UX, Sentiment analysis, Influencer Activation Platfroms, AW Services,
Multithreading & Distributed systems.

Acknowledgements

Marc Rivoira For giving me the opportunity to conduct my internship
at ActSocial, and reaching out to me.

Liu Kai For teaching me everything about crawling into data, using de-
veloper tools and implementing new structures.

Liu Zhehui For always being here when I needed help, and taking the
time to help me with troubleshooting.

Chen Jian, Chen Lei & Qian Tianyang For being such good team-
mates, by sharing knowledge, helping me and guiding me to become a better
engineer.

Ludovic Wassermann, Jeremy Rigaud & Francois Daugny For in-
troducing me to ActSocial and giving me excellent base knowledge in project
management.

UTBM and UTSEUS For giving me the opportunity to study in Shang-
hai and meet so many interesting people!

1

Contents

1 Introduction to the Project 4
1.1 We are All Part of Big Data 4
1.2 How Data Structures Define us 4
1.3 Representing Social Variables 5
1.4 Building Insights from Knowledge 5

2 Corporate Structure & Goals 7
2.1 ActSocial by Linkfluence . 7

2.1.1 A Global Social Intelligence Group 7
2.1.2 Two products, one service 8
2.1.3 Technology & Engineering 9

2.2 Internship Role & Responsibilities 9
2.2.1 Achievement Goals . 10
2.2.2 Management Tools . 10

3 Crawling into New Sets of Data 12
3.1 Introduction . 12

3.1.1 Crawler Structure . 12
3.1.2 Terminology . 13

3.2 Preliminary data treatment 14
3.2.1 Parsing content . 14
3.2.2 Analyzing & Storing content 15
3.2.3 Queueing Systems . 15
3.2.4 Performance Monitoring 16

4 Implementing a Distributed System Architecture 18
4.1 A large-scale complex system 18

4.1.1 Architecture needs . 18
4.1.2 Concurrency & Actor Systems 19

4.2 Network Interactions . 21
4.2.1 Cluster Management 21
4.2.2 Crawling & Message Flow 22
4.2.3 Distributed Storage 23

2

5 Processing Information into Vizualisations 24
5.1 Data Exploration . 24

5.1.1 Interactivity & Preprocessing 24
5.1.2 Development milestones 25

5.2 Influencer Activation Platforms 26
5.2.1 Features . 26
5.2.2 Development milestones 27

6 Conclusion 29
6.1 Challenges . 29
6.2 Outcome . 30

Bibliography 32

Appendices 34

A Primary Crawler Data Stream 35

B Batch Processing Crawler Architecture 36

C Social Network Service Crawling Tasks 37

D Crawling Technology Architecture 38

3

Chapter 1

Introduction to the Project

1.1 We are All Part of Big Data
Today, almost every one of us has a social account on the web. Wether

you are using Facebook, Weibo, LinkedIn, or even Instagram there is always
an identity that corresponds to you. Another growing trend we’ve been
noticing these days is the use of centralised authentification services. Why?
Simply because it’s convenient. When you have to create a new account on
a shopping platform or a support forum and there is a big button offering
you to sign up using Google or Facebook, it’s a pretty tempting option - but
yet again, another link to your social identity.

In the past people could only interact with things around themselves,
leading to smaller impacts but also smaller reach and possibilities. With
the birth of internet people can act on real entities they don’t even see.
To put it more simply, you don’t just go to your retail store to order, pay
and take your good using your voice, eyes and hands but you go on an
online retail store. This leaves a trace about you : your tastes, your general
location, but also your personality.

1.2 How Data Structures Define us
Based on simple informations such as the amount of products sold on e-

commerce websites, hot topics on forums or likes on posts, statistics can be
made. Of course, these informations are based on anonymous data, publicly
accessible. That is where we start talking about sentiment analysis and
machine learning. Sometimes, with sentiment analysis, it is very easy to
know if someone is delighted or not - if the user is provided with an explicit
option to indicate so. But when it’s not the case we have to rely on machine
learning.

4

Every data item is different and therefore unique : it has been created at
a specific time, from a specific place, in a specific part of the web and in
that respect it defines us, people, at the source of this data. Being able to
reverse engineer that information to classify it can prove to be a difficult task.
Information on the web is chaotic just as humain nature can be unpredictible
at times, and this is the reason why accuracy indexes need to be used.

1.3 Representing Social Variables
The challenge of representing data comes only after a structured and clas-

sified system has been set up. Data can then be represented in a raw form,
simply based on it’s aggragated values, or in a processed form based on the
output of machine learning algorithms or formulaes. Either way, data vi-
sualization is another challenge in itself involving giving the user the right
information at the right time - otherwise it may hardly make sense. By
building the right back-end structure, data can be easily manipulated for
visualization allowing live feeds and updates, complex filters and represen-
tations.

When representing data the challenge is always to make it as simple to
understand as possible. Graphs must tell a story of their own, a story that
is intuitive and makes immediate sense for the viewer. For this feat to be
possible large amounts of data are required and in depth tailored processing
has to be made to help for further interpretation.

1.4 Building Insights from Knowledge
Even after using computing power to crack open the social sphere of vir-

tual data, it all boils down to requiring a team of real human engineers to
get the most out of the models that have been made. Sure, diagrams tell
their own stories and help get general and detailed views based on a situa-
tion or referencial, but they don’t bind information outside of their scope of
analysis and sometimes lack bottom-line information businesses are looking
for. Outside the areas covered by a product that can give the same type of
service to anyone, adjustements and tayloring must been made by human
beings in teams of researchers. Machines are very performant at doing an
incredible amount of complex tasks but can’t learn and proceed properly
without correction or guidance. In fact, machines are very bad at acheiving
abstract tasks, which humans are good at.

This whole process leading to the creation of detailed insights and the
understanding of the big social data surrounding us is a challenge to set
up, but proves to be of invaluable use on the long term. The rest of this

5

report is dedicated to explaining how this detailed process articulates itself
around major tasks that have been accomplished during my internship. Since
October 2015, ActSocial has been part of Linkfluence ; both companies will
therefore be introduced.

6

Chapter 2

Corporate Structure & Goals

2.1 ActSocial by Linkfluence

2.1.1 A Global Social Intelligence Group

Linkfluence was founded in 2006 in France, has now more than 100 em-
ployees in Europe and more than 300 clients worldwide including brands,
agencies and public organizations. By getting the most out of social con-
versations on Facebook, Twitter, Instagram, LinkedIn, online media, blogs
and forums, their goal is to generate new opportunities to manage corporate
reputation, customer relationship and social network performance.

On October 15th, ActSocial was acquired by Linkfluence thus renamed
"Linkfluence Asia". The objectives of this merge is to enable new listening
features in Asia, and provide to businesses located in Asia with insights
on the emerging market. A complete merge between tools, research teams
and technologies has been launched to provide the best experience in social
media listening. Today ActSocial counts about 50 people, and has offices in
Singapore and Shanghai.

Figure 2.1: ActSocial & Linkfluence logos

Understanding Big Data can prove to be a complex task when it comes
to digging out the information that is really valuable, and this is the reason
why ActSocial & Linkfluence have brought together a team of social media
experts along with highly efficient products. ActSocial’s motto is "Insight,
Action, Influence" true to the three areas of services provided : offering social

7

media websites listening and providing Businesses with detailed analysis
based on the areas of the industries they wish to cover, empowering them
to change the conversation.

2.1.2 Two products, one service

Along with their services, ActSocial & Linkfluence offer a software that
can track and analyze millions of publications from millions of sources on a
daily basis. With Radarly companies can view, analyze and interact with
social feedback from their customers in order to take the best actions for
the future.

Figure 2.2: Linkfluence’s Software Radarly

The software provides a global view of the selected industry with key val-
ues and trends, in which users can dig in for deeper analysis. Insights provide
a set of graphs to view, compare and get a more detailed analysis on key-
words and sentiments. The last feature being intergrated into both software
is to be able to engage with major influencers by tagging and interacting
with them.

8

Figure 2.3: ActSocial’s Software

Using both tools, research experts can provide businesses with valuable
reports based on these insights. The finals steps in the process are to engage
with their customers on a larger scale for some companies, by implementing
an Influencer Activation Platform (IAP).

2.1.3 Technology & Engineering

The I.T. service is comprised of 6 engineers split into three major teams
depending on the work context, and the abilities of each member : Liu
Kai – CTO, Liu Zehui – Lead Engineer, Qian Tianyang – Lead Support
Engineer, Chen Jian – Back-End Engineer, Chen Lei – Support Engineer,
David Hoeffel – Front-End Engineer

Support Responsible for maintaining the crawler base, handling Zendesk
bug tickets and network issues. Main tools used are Kibana, ActSocial’s
home-made crawler monitoring tool, and ruby for programming.

Infrastructure Entitled to discuss and shape up major structural changes
by integrating new concepts and new technologies, data storage, transmis-
sion and architecture.

Back-end & Front-end Tasks to carry out design intergrations or data
process changes on different projects.

2.2 Internship Role & Responsibilities
Subject: Collection, processing & representation of social media data for
business intelligence.

9

During my internship I was lead to working on various different projects,
ranging from website development to creating a threaded database content
extractor. All objectives have allowed me to envision the global scope of
being a web engineer, architect and developper in an environment handling
Big Data. The main projects I contributed to are listed below.

2.2.1 Achievement Goals

• Developing and designing new websites

• Integrating enhanced features to ActSocial’s web listening software

• Optimizing data crawling algorithms

• Setting up new crawling structures and managing data streams

• Data Access and Streaming in and out of the Crawler architecture

August & September Assisting in the development of client’s Influencer
Activation Platforms for Desktop and mobile. Front-end programming and
interface intergrations on ActSocial’s software and websites. Carrying out
the version evolution of ActSocial’s listening software, by intergrating a new
custom date range feature.

October & November Back-end programming on the crawler base in-
volving optimization, site exploration and rule updates. Reshaping Act-
Social’s business website. Implementing Kestrel queuing. Benchmarking
Linkfluence’s webpages from Asia. Performance tests for Influencer Activa-
tion platforms, managing AWS services for fast content delivery and virtual
computing.

December & January Technology merge with Linkfluence, change in
crawler architecture with a Scala proof of concept. Push of Asian crawling
data from ActSocial to Linkfluence’s software Radarly. Redesign of ActSo-
cial’s website to match with Linkfluence Asia. Work on a threaded data
exporter from ActSocial’s databases to Xml files, and a Sina Weibo stream
reader with Akka.

2.2.2 Management Tools

Pivotal Tracker is our drop-off chest of new development features, bugs
and ideas for ActSocial. Bugs on the front-end or back-end can be listed,
categorized and assigner in real time in the team. Our icebox section let us
list hypothetical enhancements that would see use on the long term. All our
version release and deadlines are listed on the dashboard for a concise and
efficient production rate.

10

Github & Gitlab that store all our projects in various branches. We
decided to use a Git also as a log of our changes and to synchronize our
numerous commits on a daily basis. All projects use different technologies
and need a specific setup, described and maintained throughout the Git
repositories. IAP projects also have their own repositories before deploying
them on the clients server. Crawler intelligence is regrouped in numerous
files in their corresponding project repository.

Deploying in a test environment was necessary for the teams to bench-
mark and test different apps before release. The client and our designer also
connected with us to input their feedback, making a cycle of corrections
before final release.

11

Chapter 3

Crawling into New Sets of
Data

3.1 Introduction
ActSocial set up a whole infrastructure allowing topics to be detected

and classified automatically, with semantic data grouped into categories
using machine learning algorithms. The sentiment of Chinese content can be
determined with a precision of 75%. Social media users creating the most
impactful content related to a specific industry or product category are
then identified. But before being able to represent social data it must first
be collected. The web is immense and full of social interactions happening
every second, setting the task of gathering data in real time not to be an
easy one. Therefore, in order to make such a thing possible we have to
use Crawlers to perform various tasks of indexing, detection and automatic
updates for us.

3.1.1 Crawler Structure

Crawlers are automated internet bots that perform web indexing tasks.
They create a bridge between web data and local networks and are used to
pilot the storage of content into databases. The target goal is to ultimately
extract social content from websites, store it and analyze it for representation
through diagrams. When fetching data from the web, our crawlers focus on
social content only : posts from users online. Once a page is opened the
goal of the crawler is to find a list of posts, and gather their body, author
and date so that all relevant social information can be stored and analyzed.
Crawlers are all shaped up the same way:

12

Figure 3.1: Architecture of a web crawler

To gather and update as much content as possible, a threaded architecture
is used to enqueue Topic URLs that need to be analyzed. The URLs in queue
are then popped by other threads and processed by a Scheduler which is used
to define crawling times, priorities and make sure the URLs aren’t malformed
or pointing to non-processable or irrelevant web pages. In the end, a parser
(not shown on graph) gathers text, pictures and other metadata from the
webpage’s url - stores the content in a database and updates the url’s record.
Other crawler jobs have been chosen to be handled such as the detection
of usernames, dates, comment items and pictures so that a more detailed
record of the social content can be made.

3.1.2 Terminology

ActSocial’s Crawlers use the notions of Channels and Threads. Chan-
nels represent a section of a website containing links to discussion Threads.
Those Threads feature content that needs to be collected ; each one can be
broken down into a series of comments. Sites with social activity considered
are Blogs, Forums, Social Network Services (Twitter, Facebook, Instagram
etc.), E-Commerce websites and more.

(a) A search Channel with Threads (b) Post items within a Channel link

13

Crawlers also obey different policies such as a selection policy for selecting
pages to analyze, or re-visit policy defining when to check for changes in
those pages. With the use of these accurate information is automatically
gathered when new posts appear. In the crawler system defined, two types of
Channels exist : those which are Category-based and those Keyword-based.
Using keywords to define channels is of use when a website posesses a custom
search engine ; it can consequently return a list of Threads containing social
data.

Because every website has a different structure, it’s not easy to precisely
sort and classify crawled data. Channel urls are stored in a database as
records with attributes to define how and when they must be crawled. Each
crawler at ActSocial relies of CSS selector rules and follows a specific crawl-
ing scheme:

• Get a site’s channels

• For each channel:

– Get the channel page content
– Get the channel links to topics
– For each topic:

∗ Get the topic page content
∗ Get the post items
∗ For each post item:

· Get the post date and time
· Get the body text & content
· Get the author information

3.2 Preliminary data treatment

3.2.1 Parsing content

When Crawling in a Thread, we decided not to store only the raw HTML
content of the page : each post item has to be selected and the elements
within it stored seperatly. In order to perform such tasks, web pages need
to be parsed from their url. Many methods are available to accomplish that
and return an element on which CSS selectors can be used to target specific
items. The selection of content based on tags is how Ruby analyzers were
built at ActSocial - so they can call a set of CSS rules stored into variables,
and apply them on a parsed web page.

1 doc = Nokog i r i : :HTML(open (u r i) , n i l , cha r s e t)
2 post_dates [] = doc . c s s (’ d iv . post_date_divs ’)

14

When parsing a document, encoding also has to be taken into account,
especially for Asian languages. Charsets such EUC-JP (for Japanese), EUC
(for Korean), GBK or GB18030 (for Chinese) are used to parse the web
pages correctly. Furthermore, Crawlers need to use custom request headers
to specify cookies, referer uri and other settings when opening a web page
to parse.

1 agent . request_headers = {
2 " Re f e r e r "=>"www. host . com/ channel_id " ,
3 " Host "=>"www. host . com" ,
4 " Cookie " => " cook ie1 ; cook i e2 ; cook i e3 ; "
5 }

3.2.2 Analyzing & Storing content

Once all the relevant data has been selected from a page document, it
needs to be converted in its correct type. Posts have a body, a date and an
author, and all tags need to be processed accordingly. Author names have to
be stripped from the HTML elements, and dates are converted from strings
to actual date objects with the correct regional format. This helps to shape
a concrete comment object, that can be saved as record in the database.

1 DateTime . parse (date_str)
2 username . s t r i p . to_s
3 cssQueryImage . f i r s t [’ s r c ’]

Before storing a web page’s content into the database and indexing it,
some controls must be made to ensure the url’s reliability and make sure the
content isn’t already saved in the database. When Thread urls are collected,
some parameters can be appended to them and need to be removed from
the url to prevent the creation of duplicate references in the database. Posts
contents are then saved as snapshots of a web page in buckets from AWS
Scalable storage service (S3), and new records are added to SimpleDB, a
document-oriented database that stores part of the content analyzed from
a web page.

To transmit post items to Linkfluence’s own analyzer used for their lis-
tening software Radarly, posts are streamed to a Kestrel queue as JSON
elements. Setting this up improved transfer speeds and entity sizes. Using
JSON also has the advantage of being best-suited as a data-exchange format
over XML, and provides structure that is easy to process and to read.

3.2.3 Queueing Systems

After our merge with Linkfluence, it was necessary to figure out a way to
inject the post items we had gathered from our crawlers into their pipeline

15

Figure 3.3: Crawler Dispatcher and Snapshotting

so that they could use the data with their listening product Radarly. We
used queues since they allow the storage of items in a definite order, and is
known to be one of the most efficient methods of transmitting data between
two different systems in a fast and reliable way. Queueing systems are used
as libraries for easy access and monitoring, they work well with crawlers that
send text data structures. Four queues were created to match our crawler
post item’s main categories : bbs (forum), blog, review and all other less
prolific types.

Indexed social posts are naturally processed using the First In First Out
scheduling policy, with Kestrel that supports Memcached text-based com-
mands, useful for displaying specific queue attributes. Memcached and
Thrift were used for advanced monitoring commands and in order to per-
form basic actions to test the fair delivery of the queued items. To transfer
the smallest item possible, post items are converted to JSON objects and
then Zipped.

1 s t r i n g = post_hash . to_json
2 msg = ActiveSupport : : Gzip . compress (s t r i n g)
3 k e s t r e l _ c l i e n t=K e s t r e l C l i e n t . new(" se rver −example . com : port ") ;
4 GET queueName /peek

3.2.4 Performance Monitoring

Testing is necessary in order to ensure that the crawlers return the right
data and algorithms have been created to check the integrity of Selector
rules, as well as the success of post indexing. Those tests are made directly
in the rails console with terminal output. The crawler base is monitored
through Kibana, that allows to display statistics in real time on crawlers.

16

The IT team has also set up a web interface to help manage these crawlers.
For a selected site, we can manage its rules, channels and details.

Figure 3.4: Kibana Monitoring

Logstash & Elastic Search are both required to generate a usable out-
put for Kibana. Deployed on multiple servers, Logstash collects running ap-
plication messages and sends a filtered version of the data to ElasticSearch.
Filters help define the types and alias of the data handled by Logstash. This
way, our whole system can be monitored with each query, future, array being
logged. Finally, ElasticSearch acts as a search engine used to look for con-
tent from our systems of log data displayed in Kibana. Kibana is deployed
on a cluster called ELK that handles the search engine and graphical display
UI of the data stored into each Logstash from Working crawler servers.

Although working well most of the time, the architecture wasn’t easily
maintainable and involved to manually set a lot of specific rules for every new
site crawler that needed to be used. Using CSS selectors has the advantage
of being easy to implement with a HTML document parser, but requires
adaptation for every single website. The decision was taken to build a more
Serializable crawler algorythm using Scala language to accomplish tasks of
collection, indexing them and storage. This new structure is has a much
faster processing speed, and was the opportunity to enhance some of the
processes used.

17

Chapter 4

Implementing a Distributed
System Architecture

4.1 A large-scale complex system

4.1.1 Architecture needs

Data Capture is just a first step in the whole process that leads to visu-
alizing it. Between these two milestones, numerous phases take place such
as Data Classification, Sentiment identification and tagging for social con-
tent - and on the other end a Zombie Detection for social accounts on SNS
platforms. This common knowledge allows the identification of real influ-
encers on specific areas of the market. The major goal here was to focus
on an efficient data capture system with pre-processed data allowing easy
classification and further processing.

Figure 4.1: From Data Collection to Representation

18

A Crawler needs to handle huge amounts of tasks, the end goal being as
fast as possible when analyzing web pages. Its functions can be seperated
into four categories : fetching, filtering, parsing, and streaming. We want
the crawlers to be as fast as possible, so we built an architecture were there is
as minimum wait as possible. For this to happen a few requirements must be
met, such as having a distributed system, load-balancing, and using efficient
toolkits such as Akka to provide message-driven actions and a constantly
running system. Our Crawler system is made of 3 clusters : one hosting
Spark, one Hadoop, and one containing Worker Servers communicating with
each other using Akka.

The system also needs to be fail-proof, meaning that if a server crashes,
data gets jammed or slowed replacement actors must be elected as the de-
ficient nodes are being restarted, and parallel processing is a key point in
ensuring continuous data treatment. Distributed Systems help achieve that
goal as they are the coordinators of messages between different processes ex-
ecuted within the network. Crawling into web pages also means managing a
uri pool of visited uris, updating their content or indexing new links. Web-
pages that have already been crawled into should only have their content
updated.

4.1.2 Concurrency & Actor Systems

The Scala code for our crawlers is then compressed into a JAR file with
SBT Assembly and deployed on four worker servers. Each crawler instance
process features Akka actors that communicate between each other with
messages - Servers and Clusters are managed by Zookeeper for work load and
availability. Zookeeper becomes a very powerful tool able to monitor Queues,
and all working machines within a cluster. Sparks allows the implementation
of RDD features within the Big Data Crawler System. To ensure the running
state of most of the services, we issue the "jps" command to list all the Java
Virtual Machine instances on our target systems.

A high system throughput requires a high amount of concurrent opera-
tions. To make it possible, a series of messages are sent between actors of
the system to coordinate them. Akka is a toolkit and runtime for building
highly concurrent, distributed, and resilient message-driven applications on
the JVM. We decided to use the Akka system as a way to manage at a high
level our processes and interactions between them. It allows the creation of
Actors, which become instances of a class able to run concurrently, using
methods to coordinate itself with other Actors. Therefore, every Actor has
a "receive" method, executing itself at the reception of a message. The use
of this system also implies two other features : the integration of finite state
machines and thread-safe objects.

19

1 State (S) x Event (E) −> Actions (A) , State (S ’)

Within Akka Actors are used Promises that result to Future objects, al-
lowing for a variable to be created whenever the Promise has achieved its
fetching and processing data. This allows to create multiple objects that are
returned whenever the Actor has finished data treatment. A Future referes
to a variable storing the result of an asynchronous process or method called
Promise. The Completion of that Promise can happen at any time, and
sets of actions are usually defined at that moment depending on the Fu-
ture value. Future objects are used in Akka and instanced by the reception
of a message. It has the advantage of being retuned when data is bound,
asynchronously from the crawling process in execution. An actor model a
primitive of concurrent computation: in response to a message that it re-
ceives, it can make local decisions, create more actors, send more messages,
and determine how to respond to the next message received.

Akka supports multiple different models of concurrency, and language
bindings exist in Java and Scala, making its intergration much easier. In
the Akka system designed, the Dispatcher is the central piece of the message
flow. It can be Idle, Active or Busy whether it is starting, receiving or passing
a message. Actors need to be initiated with a state : startWith(Idle,Empty)
and change state upon the reception of messages handled by cases. Messages
are sent using "!" or "?" and trigger names events to other actors of the
system.

Crawler Dispatcher:
1 when (Id l e , stateTimeout = idleTime) {
2 case Event (Front i e r . Msg(msg) , _) =>
3 handleDequeuedMsg (msg)
4 l og . i n f o (" [d i spatch] changeStateTo Active ’ ’ 0 ")
5 goto (Active)
6 case Event (StateTimeout | Front i e r . Empty , _) =>
7 feedQueue ! Front i e r . Next
8 s tay
9 }

Crawler Frontier:
1 de f r e c e i v e : Actor . Receive = {
2 case Next =>
3 Future {
4 next match {
5 case Some(msg) =>
6 Msg(msg)
7 case _ =>
8 Empty

20

9 }
10 } pipeTo sender

4.2 Network Interactions

4.2.1 Cluster Management

In order to maintain a load balance and synchronize all Crawling servers,
Zookeeper was used as a distributed coordinator. In our system, it keeps the
different actors sychronized. Each time an Actor wishes to perform a task,
it addresses its request to Zookeeper that will coordinate all clusters in the
system. If a cluster is down, Zookeeper will automatically redirect the load
on another cluster. If a master server is down, Zookeeper can also re-elect
a master server to coordinate sub-tasks. Each cluster that had been set up
contains a set of servers represented by Amazon EC2 instances. The Spark
cluster contains two Workers and one Master. The Akka cluster contains
four Workers. The Hadoop cluster contains four storage servers running
respectively Hadoop, HBase, ElasticSearch and Kibana. Logstash is ran on
the three Spark servers. The Kestrel Queue is used to output data from our
system to Linkfluence’s servers in France.

Figure 4.2: Zookeeper Configuration Spread

21

4.2.2 Crawling & Message Flow

Figure 4.3: New Crawler Message Flow Diagram

The first actor in the crawler topology is the Feeder. It’s job is to collect
uris from the database and enqueue them periodically. There are multiple
feeders running simultaneously to quickly push uris to an initial queue of
webpage urls.

The Dispatcher has multiple roles : the first is to dequeue items for the
source queue only if Fetchers are available ; the second is to transmit the
url to the Filter for inspection before handing it to a Fetcher. After the
Fetcher has done its job, the Dispatcher then passed the fetched data to a
ParseRoute that will direct the result to an available Parser.

The Filter checks if a given url is a webpage object that can be crawled. It
also compares the url with custom rules from the source website, including
the Robots Exclusion Protocol specifying source repositories not to crawl.

The Fetcher retrives the header and the content at the specified url, and
informs the Dispatcher back of its availability.

The Parser’s job is to parse the web content to the JSON format, stream
it to an output queue and update the status of the processed webpage in the

22

database with a next crawl date and priority. The Parser instances different
types of content Extractors to respectively extract document Metas, Html,
Images, Links and Rss content if needed from webpages.

Spark offers features of a RDD (Resilient Distributed Dataset), meaning
that data can be persisted in memory and recomputed if part of it is lost.
Data can be read and processed concurrently, and operations on it are seper-
ated into tasks that are being executed only when required (laziness). When
handling crawler operations, to ensure that there is waiting time between
our Parser, Dispatcher and Filter an RDD helps us save a lot of time by
managing data in our system.

4.2.3 Distributed Storage

In order to store the large amounts of data collected by the crawlers,
Hadoop was the perfect choice to allow quick access of large files and scal-
ability. There is so much data in the crawler databases that almost every
request returns large amounts of files. Hadoop allows a fail-safe cluster of
data replication and can manage servers that are down. The Hadoop Dis-
tributed File System, or HDFS, uses MapReduce to process files in batch
mode - meaning that files arent returned individually but by big sets when a
request is made. MapReduce has the advantage of being thought for scala-
bility. Since batches of data are requested when they need to be represented,
the Mapper is going to find what we seek, and the Reduce process will re-
combine each part of the objects requested back together from each server
in the Hadoop Cluster. HBase is a distributed scalable NoSQL database,
and it supports random read and write access to data.

Since the plan was to store large amounts of objects with a structure that
can’t be predefined, the requirements for our storage system were for it to
be : schema free, support basic SQL and scalable. Crawlers have multiple
sources, ranging from simple forums to SNS platforms like Twitter that don’t
return the same types of structures, and are subject to policy changes in the
future. Due to the changeability of these data structures, it was necessary
to use a Scalable and Schema-free database supporting a minimum level of
SQL queries. SimpleDB was chosen as it is an Amazon Service providing all
these features in an easy-to-use package. Data is stored into SimpleDB as
documents, meaning that we never need to care about the structure of the
objects our objects. We than iterate the Database with simple SQL queries
to return desired social topics, users or post objects.

23

Chapter 5

Processing Information into
Vizualisations

5.1 Data Exploration
The challenge of representing data goes through two processes : machine

learning and visualisation frameworks. To build visualizations withing Act-
Social’s listening software the d3.js library was used as it quickly offers a
set of dynamic graphs adapted to different representations. Representing
data is the final step of data gathering, it comes after data has been filtered,
sorted, processed using algorithms. Data visualizations need to be dynamic
for the end-user to truly comprehend what he is looking at. It is with that
mindset that Radarly and ActSocial’s listening software were designed.

5.1.1 Interactivity & Preprocessing

Machine learning is a set of algorithms used to predict statements based
on sample data. This is how sentiments can be tagged based on adjectives.
Nevertheless, Chinese sentiment analysis goes through additionnal character
matchings as there are no space between words, and two characters may have
different meanings based on their combination.

After being processed, many visualisations can be made from data. A
graph factory has been coded in the back-end code to instanciate and link
data objects to different graphic views. It is also possible to handle exports
for multiple datasets, with each graph having an equivalent spreadsheet
structure. Every display page is generated for a specific time range, data
being queried from the database based on predefined periods as follows:

1 Database −> C o n t r o l l e r q u e r i e s −> Data Object −> Graph
i n s t a n c e −> View Generation

24

	 	 	 	 	

Try	 ActSocial	 now	 and	 see	 for	 yourself!	 Get	 started	 at	 www.actsocial.com	

ActSocial Features

Brand Buzz (Mention Volume)
Understand the volume of mentions
about you and your competitors, and
identify the most popular posts.

Sentiment
Understand the sentiment of posts by
topic, using cutting edge auto sentiment
machine learning algorithms.

Topic Tracking
Be aware of the topics about your brand,
competitors, and industry to inform your
content and media planning.

Competitor Landscape
See the strength of your brand in terms
of volume, sentiment, and engagement,
relative to competitors.

Geographic Map (Heat Map)
See where are consumers talking about
your brand, competitors, and topics. get
location detail down to street level.

Automatic Report Export
Get the report you need when you need
it, straight to your inbox. Reports include
best content, negative sentiment, etc.

Follower Statistics
Understand your social media fans and
followers better with demographics,
location, influence ranking, and more.

Zombie Detection
Ensure a high quality of followers with
active follower tracking and unique
zombie and bot analysis (Weibo only).

Content Propagation Analysis
Track your most effective content and
identify the critical social media nodes in
your followers (Weibo only).

Publish & Response
Publish, schedule, and batch content
across multiple SNS accounts. Respond
followers, and service or sales leads.

KOL Identification
Identify and rank your best fans and
followers in terms of influence, activity,
and engagement.

Programmable Alerts
Setup alerts by keyword, velocity,
channels or sentiment, and get notified
by email or SMS immediately.

Figure 5.1: Listening Software Features

5.1.2 Development milestones

Intensive bug search sessions have been conducted in order to identify and
list front-end and back-end operations to make as fixes. This led to further
alterations involving the way data is presented with the implementation of
new features. A new software release was planned to allow the selection of a
custom range of time to represent social data online, involing major changes
that had to be done.

Offline tasks retreive every day social data from the database using prede-
fined periods of time, implying that even if a new period of time is requested
by the user, the data can’t be accurately pulled in real time. This limits
queries to the database of 1 per day. For the user to be able to track trends
with greater precision, setting up a custom date range picker would be nec-
essary. Data is sorted by the controller according to predifened periods of
time : 90-60-30 Days ago, 1 Months ago, 1 week ago, Yesterday, Today.
A period is bound to a specific range of dates by the controller. The mo-
ment.js library was used to Parse, validate, manipulate, and display dates
in JavaScript. Every instance of time is generated with this library that
offers an object that can be easily manipulated. Creating a custom date
range requires to query the database in order select data according to the
period selected. The instruction of creating a new period is therefore given
to the database if that range doesn’t exist yet. Custom user periods are then

25

added to the list of periods in the database and scheduled to be generated
from the following day on. This is a constraint that had to be dealt with as
queries can’t be made in real-time do to the heavy amount of data in the
database.

If a custom period is within the ranges of period categories that are avail-
able, the controller can simply filter social data, thus immediatly display it
to the user without querying the database again. Daterangepicker.js is a
JavaScript component for choosing date ranges. It’s designed to work with
the Bootstrap CSS Framework and has the asset of being able to combine
category-based period selection with a custom range option, presented in a
user-friendly way.

When trying to represent social data with d3.js, some conditions can go
wrong especially with the use of location or site fitlers on a large scale.
Making sure there were no inconsistencies in the data, with bug-free fast
and responsive graphs. Wrong data models linked to graphs or incorrect
behaviours and display artifacts were fixed with an in-depth troubleshooting
through controller data, and structure manipulation by the front-end.

5.2 Influencer Activation Platforms
ActSocial possesses intelligence related to key influencers and trending

topics. The idea is to use this data to help businesses identify pain points
and plan their next move. The core idea of such a platform is to create
value by targeting new potential influencers amongst a company’s customer
base. By gaining the loyalty of their customers, businesses can create more
word-of-mouth opportunities driven by people who have a real impact on
social media.

5.2.1 Features

Influencer Activation Platforms aren’t meant to persist on the web, but
rather to create temporary opportunities for customers to gain rewards,
integrate a company’s culture and apply to some jobs. The engagement
process goes as the following : users have missions they can accomplish such
as reading or commenting tasks. They are rewarded for each individual
action they make with points that allow them to redeem gifts. The goal
of such a platform is to create favorable relationships between potential
customers and give birth to real influencers that can testify of the quality
of a brand on the web.

26

Every Mission has a timed deadline and gives a defined amount of points
for achieving it. Their are meant to entice social activity between partic-
ipants and make them spread the word about the tasks they are involved
into. Throughout my internship three IAPs were made for SAP, Actualyse
and StyleXStyle. Those three clients shared the same project, but heavy
customization was made by branching the code.

Figure 5.2: SAP China’s Influencer Activation Platform

5.2.2 Development milestones

With several clients to manage, style settings were regrouped into one
SASS file for easier customization of fonts, colors and logos. Taking into ac-
count mobile devices also required CSS alterations to match different screen
widths and network speeds. The use of Facebook or Weibo authentifica-
tion provided us with API keys and secrets for our web applications. For
development purposes we used the OAuth library to connect to SNS as if
we were authentifying directly from the web, making Weibo believe that we
are authenticating to him via the online SAP url port 80 (but actually we
are from localhost IP with port 3000). Rails is not authorized to use port
numbers under 1000, because they are system reserved - it was necessary to
use Apache2 to make a Proxy pass since it has the rights to use any port on
the system.

1 sudo a2enmod proxy_http
2 Creat ing a new v i r t u a l host :
3 sudo cp 000− d e f a u l t . conf sap labsch ina . conf
4 sudo a 2 e n s i t e sap labsch ina

Finally, custom javascript methods were coded to manage ajax data sub-
mission of forms, custom jQuery effects or dynamic web page elements.
About a total of six projects were affected by changes made in the front-

27

end. In order to maintain the most generic code the I18n format, libraries
such as Polyglot were used within HBS files to support multiple languages.

28

Chapter 6

Conclusion

6.1 Challenges
After gathering some basic knowledge about data mining within modern

MVC architectures and frameworks, I worked mainly as a front-end engineer
with responsibilities on back-end ruby programming.

Influencer Activation Platforms At my arrival I worked on develop-
ping an Influencer Activation Platform (IAP) for SAP, third project of this
type carried out by ActSocial. Some technologies and frameworks were al-
ready in place such as the use of Ruby on Rails, with an MVC Angular
and Bootstrap intergrated architecture. I mainly participated in setting the
technologies used as a new standard for future projects and shaping the
interface as our development process went on for our SAP and Actualyse
clients.

ActSocial’s listening website ActSocial’s listening sofware was coded
using technologies such as Node, Bower, Backbone and Bootstrap. Along
with the team, we referenced and categorized bugs and enhancements for
ActSocial’s dashboard. Each of us worked on different assigned tasks coor-
dinated using PivotalTracker. My responsibilites were to set up a front-end
structure capable of intergrating data structure objects from the back-end,
and communicate with other engineers in order to implement design changes.

Social data crawlers ActSocial created a base of hundreds of crawler
channels selecting topics on social websites on a daily basis, and storing
them into databases. Data is processed with a global ruby thread analyzer
using customized rules for every website. Maintaining and improving the
crawler base involved working with ruby and home-made web-tools in order
to retreive new data in the correct data structures and databases.

29

Policy updates & new projects The company’s business website was
set up using Jekyll, Bootstrap and Jquery. Restructuring the homepage had
me working along with a user experience engineer based in Los Angeles to
integrate Linkfluence’s updated policy and changes to ActSocial’s website.
Commissioned to create a document database exporter, work also had to be
made with a colleague to read and store content from an AWS SimpleDB to
JSON formatted files and involved the use of Threads and popular libraries.

6.2 Outcome
The time I spent as an intern at Actsocial started with a lot of challenges

and ended being full of great lessons and experiences. I felt encouraged by
my colleagues who helped me learn a lot about distributed systems and how
Big Data is handled and collected from start to finish. This experience led
me to improve my development skills on many levels and discover a lot of
new languages, framework and general technical knowledge. The great team
communication lead us to work together and collaborate on many projects
with various needs in features or set up.

After the merge with Linkfluence, new objectives appeared with the com-
bination needs of ActSocial’s data with Linkfluence and led to new projects
to stream our knowledge and content to the French IT team. It is still the
beginning of an expanding company which aims to analyze and step firmly
in Asia, and make use of the Chinese and strong social networks there. The
global outcome of my internship can be summed up with the milestones
below:

1. ActSocial’s business site redesigned

2. Kestrel queueing system integrated

3. Version update for Actsocial’s listening software

4. New crawler concept set up

5. Crawler base maintained and improved

6. Influencer Activation Platforms deployed

7. SimpleDB Distributed Exporter developped

8. Sina Stream Reader project ongoing

30

With these projects carried out these 6 months, considerable progress
have been made on web platforms set up by ActSocial, also on their lis-
tening software and their global crawler system. I have learnt a lot of valu-
able lessons and technical knowledge on database management, AWS, server
setup, crawlers and general web development - web architectures and frame-
works. Participating in the writing of technical articles on the team blog
has also proven to be an enlightening sharing experience, and helped in the
understanding of technical concepts. Today these projects are still being
improved and new objectives have been planned with Linkfluence to exploit
new data from Asian social networks in the following months.

31

Bibliography

[1] Our technical articles
http://blog.leanote.com/actsocial

[2] Actsocial Crunchbase Profile
https://www.crunchbase.com/organization/actsocial

[3] http://queues.io/

[4] http://www.shmula.com/queueing-theory/

[5] http://www.daterangepicker.com/

[6] http://jmt.sourceforge.net/

[7] http://momentjs.com/

[8] http://redis.io/

[9] http://gruntjs.com/

[10] https://www.npmjs.com/

[11] https://nodejs.org/api/

[12] http://yeoman.io/

[13] http://bower.io/

[14] https://rvm.io/

[15] https://jekyllrb.com/

[16] http://www.scala-sbt.org/

[17] http://kafka.apache.org/

[18] http://www.json.org/xml.html

[19] http://docs.scala-lang.org/style/

[20] http://nutch.apache.org/

32

[21] http://doc.akka.io/docs/akka/2.4.0/scala/fsm.html

[22] https://www.thoughtworks.com/radar

[23] https://thrift.apache.org/

[24] http://api.rubyonrails.org/

[25] http://docs.aws.amazon.com/

[26] https://www.nomachine.com

[27] http://watir.com/

[28] http://www.w3schools.com/

33

Appendices

34

A
pp

en
di
x
A

P
ri
m
ar
y
C
ra
w
le
r
D
at
a
St
re
am

Si
te

/c
h

an
n

el
Sc

an
n

er
D

is
p

at
ch

er

Sc
an

n
er

D
is

p
at

ch
er

C
h

an
n

el
Q

u
eu

e S
n
a
p
s
h
o
t

l
i
n
k
D
B

Sn
ap

sh
o

t
D

is
p

at
ch

er

Sn
ap

sh
o

t
D

is
p

at
ch

er

Fe
ed

b
ac

k
P

ro
xy

Fe
ed

b
ac

k
P

ro
xy

Sn
ap

sh
o

t
Q

u
eu

e

Sc
an

n
er

W
o

rk
er

Sc
an

n
er

W
o

rk
er

Sc
an

n
er

W
o

rk
er

Sc
an

n
er

W
o

rk
er

Sn
ap

sh
o

t
W

o
rk

er

Sn
ap

sh
o

t
W

o
rk

er

Sn
ap

sh
o

t
W

o
rk

er

Sn
ap

sh
o

t
W

o
rk

er

S
n
a
p
s
h
o
t

D
B

I
n
d
e
x
e
d

S
n
a
p
s
h
o
t

A
n

al
yz

er
Q

u
eu

e

A
N

Z
A

N
Z

M
L

M
L

P
ro

ce
ss

e
d

D
at

a

To
p

ic
/S

co
p

e

A
n

al
yz

er
D

is
p

at
ch

er

A
n

al
yz

er
D

is
p

at
ch

er

M
o

d
u

le
 m

an
ag

er
EM

R

M
o

d
u

le
 m

an
ag

er
EM

R

R
D
S

T
r
a
i
n
i
n
g

D
a
t
a

m
an

u
al

tr
ai

n
in

g

m
an

u
al

tr
ai

n
in

g

K
n

o
w

le
d

ge
G

en
er

at
e

K
n

o
w

le
d

ge
G

en
er

at
e

K
n
o
w
l
e
d
g
e

D
B

Ta
sk

Q
u

eu
e

Ta
sk

M

an
ag

em
en

t
R

u
b

y/
R

ai
ls

Ta
sk

M

an
ag

em
en

t
R

u
b

y/
R

ai
ls

Fi
lt

er
Fi

lt
er

re
d

is

P
u

ll
A

P
I

W
EB

SN
S

A
P

I
M

O
B

A
P

P
W

h
it

e
La

b
el

al
p

h
a.

ac
ts

o
ci

al
.c

o
m

C
o

m
m

u
n

it
y

Sync

Sn
ap

sh
o

t
W

o
rk

er

Sn
ap

sh
o

t
W

o
rk

er
Sc

an
n

er
W

o
rk

er

Sc
an

n
er

W
o

rk
er

SD
B

Te
xt

 b
as

ed

SN
S

m
an

ag
er

H
IV

E

SN
S

m
an

ag
er

H
IV

E

…

B
eh

av
io

r

…

…
…

..
.

..
.

P
ro

ce
ss

e
d

D
at

a

So
lr

In
d

e
xe

d

d
at

a Ev
er

y
6

h

o
u

rs

M
e

m
-B

as
e

d
R

-T

co
n

ve
rs

it
io

n

In
d

e
xe

d

d
at

a

M
e

m
-b

as
e

d
H

o
t

b
e

h
av

io
r

su
rv

ey
b

eh
av

i
o

r
st

at
s

ca
n

p
ai

gn
al

er
t

SD
B

R
u

b
y

A
W

S
SQ

S

S3
SD

B

R
u

b
y

A
W

S
SQ

S

R
u

b
y

R
ed

is
A

W
S

SQ
S

S3

R
u

b
y

R
u

b
y

Te
xt

 B
as

ed

R
u

b
y/

R
ai

ls

R
u

b
y/

N
ai

ve
 B

ay
es

D
yn

am
o

D
B

Si
m

p
le

D
B

So
lr

 c
lo

u
n

d
Zo

o
ke

ep
er

El
as

ti
c

C
ac

h
e

A
W

S
R

D
S

R
u

b
y

o
n

 R
ai

ls
B

ac
kb

o
n

e

R
u

b
y

W
at

ch
d

o
g

W
at

ch
d

o
g

Su
p

p
o

r
Te

am

IA
P

In
fl

u
en

ce
r

C
le

n
t

P
ai

ri
n

g
En

gi
n

e
Li

n
ea

r
A

lg
eb

ra
o

n
 G

P
U

P
ro

sp
ed

C

lie
n

t

w
w

w
.a

ct
so

ci
al

.c
o

m

V
er

ti
ca

l
K

ey
w

o
rd

Li
st

D
at

e
Te

am

Fi
gu

re
A
.1
:
D
at
a
St
re
am

fr
om

co
lle

ct
io
n
to

re
pr
es
en
ta
tio

n
w
ith

in
th
e
ne

tw
or
k.

35

A
pp

en
di
x
B

B
at
ch

P
ro
ce
ss
in
g
C
ra
w
le
r
A
rc
hi
te
ct
ur
e

A
m
az
on

S
Q
S

A
m
az
on

S
Q
S

—
 O
R
 —

A
m
az
on

R
D
S

A
m
az
on

R
D
S

A
m
az
on

S
im

p
le
D
B

M
as

te
r
D
B

S
la
ve

 D
B

E
la
st
ic
 IP

A
m
az
on

E
C
2

A
m
az
on

E
C
2

C
o

n
tr

o
l M

es
sa

g
es

A
m
az
on

S
3

Jo
b

In
fo

 &

An
al

yt
ic

s
St

or
e

W
or

ke
r

No
de

s

O
ut

pu
t

Q
ue

ue

(O
pt

io
na

l)

In
pu

t Q
ue

ue

Jo
b

Da
ta

St
or

e
Jo

b

M
an

ag
er

A
u
to

S
ca

lin
g

O
pt

io
na

l
Ch

ai
ni

ng

6

4

6
7

2 5

3

E
n
d
 U
se

r

1

B
A

T
C

H
P

R
O

C
E

S
S

IN
G

B
at

ch
 p

ro
ce

ss
in

g
ar

ch
ite

ct
ur

es
 a

re
 o

fte
n

sy
no

ny
m

ou
s

w
ith

 h
ig

hl
y

va
ria

bl
e

us
ag

e
pa

tte
rn

s
th

at
 h

av
e

si
gn

ifi
ca

nt
 u

sa
ge

 p
ea

ks
 (

e.
g.

,
m

on
th

-e
nd

pr

oc
es

si
ng

)
fo

llo
w

ed

by

si
gn

ifi
ca

nt

pe
rio

ds

of

un
de

ru
til

iz
at

io
n.

T
he

re
 a

re
 n

um
er

ou
s

ap
pr

oa
ch

es
 t

o
bu

ild
in

g
a

ba
tc

h
pr

oc
es

si
ng

ar

ch
ite

ct
ur

e.

T
hi

s
do

cu
m

en
t

ou
tli

ne
s

a
ba

si
c

ba
tc

h
pr

oc
es

si
ng

ar

ch
ite

ct
ur

e
th

at
 s

up
po

rt
s

jo
b

sc
he

du
lin

g,
 j

ob
 s

ta
tu

s
in

sp
ec

tio
n,

up

lo
ad

in
g

ra
w

 d
at

a,
 o

ut
pu

tti
ng

 j
ob

 r
es

ul
ts

,
gr

id
 m

an
ag

em
en

t,
an

d
re

po
rt

in
g

jo
b

pe
rf

or
m

an
ce

 d
at

a.

B
at

ch
 p

ro
ce

ss
in

g
on

 A
W

S
 a

llo
w

s
fo

r
th

e
on

-d
em

an
d

pr
ov

is
io

ni
ng

of

 a
 m

ul
ti-

pa
rt

 j
ob

 p
ro

ce
ss

in
g

ar
ch

ite
ct

ur
e

th
at

 c
an

 b
e

us
ed

 f
or

in

st
an

ta
ne

ou
s

or

de
la

ye
d

de
pl

oy
m

en
t

of

a
he

te
ro

ge
ne

ou
s,

sc

al
ab

le
 “

gr
id

”
of

 w
or

ke
r

no
de

s
th

at
 c

an
 q

ui
ck

ly
 c

ru
nc

h
th

ro
ug

h
la

rg
e

ba
tc

h
pr

oc
es

si
ng

ta

sk
s

in

pa
ra

lle
l.

T
he

re

ar
e

nu
m

er
ou

s
ba

tc
h

or
ie

nt
ed

 a
pp

lic
at

io
ns

 i
n

pl
ac

e
to

da
y

th
at

 c
an

 l
ev

er
ag

e
th

is

st
yl

e
of

 o
n-

de
m

an
d

pr
oc

es
si

ng
,

in
cl

ud
in

g
cl

ai
m

s
pr

oc
es

si
ng

,
la

rg
e

sc
al

e
tr

an
sf

or
m

at
io

n,

m
ed

ia

tr
an

sc
od

in
g

an
d

m
ul

ti-
pa

rt

da
ta

pr

oc
es

si
ng

 w
or

k.

A
m

az
on

 E
C

2

A
m

az
on

 R
D

S

A
m

az
on

 S
Q

S

A
m

az
on

 S
3

A
u

to
 S

ca
lin

g

AW
S

Re
fe

re
nc

e

Ar
ch

ite
ct

ur
es

1

4

2

5
3

6

A
m

az
on

 S
im

p
le

D
B

S
ys

te
m

O
ve

rv
ie

w
U

se
rs

in

te
ra

ct
 w

ith
 t

he
 J

ob
 M

an
ag

er
 a

pp
lic

at
io

n
w

hi
ch

is

 d
ep

lo
ye

d
on

 a
n

A
m

az
o

n
 E

la
st

ic
 C

o
m

p
u

te
r

C
lo

u
d

(E

C
2)

in

st
an

ce
.

T
hi

s
co

m
po

ne
nt

co

nt
ro

ls

th
e

pr
oc

es
s

of

ac
ce

pt
in

g,

sc
he

du
lin

g,

st
ar

tin
g,

m

an
ag

in
g,

an

d
co

m
pl

et
in

g
ba

tc
h

jo
bs

.
It

al
so

 p
ro

vi
de

s
ac

ce
ss

 t
o

th
e

fin
al

 r
es

ul
ts

,
jo

b
an

d
w

or
ke

r
st

at
is

tic
s,

 a
nd

 jo
b

pr
og

re
ss

 in
fo

rm
at

io
n.

R
aw

 jo
b

da
ta

 is
 u

pl
oa

de
d

to

A
m

az
o

n
 S

im
p

le
 S

to
ra

g
e

S
er

vi
ce

(S

3)
,

a
hi

gh
ly

-a
va

ila
bl

e
an

d
pe

rs
is

te
nt

da

ta

st
or

e.

In
di

vi
du

al
 j

ob
 t

as
ks

 a
re

 i
ns

er
te

d
by

 t
he

 J
ob

 M
an

ag
er

 i
n

an

A

m
az

o
n

S

im
p

le

Q
u

eu
e

S
er

vi
ce

(S

Q
S

)
in

pu
t

qu
eu

e
on

 th
e

us
er

’s
 b

eh
al

f.

W
or

ke
r

no
de

s
ar

e
 A

m
az

o
n

 E
C

2
in

st
an

ce
s

de
pl

oy
ed

on

 a
n

 A
u

to
 S

ca
lin

g
 g

ro
up

.
T

hi
s

gr
ou

p
is

 a
 c

on
ta

in
er

th

at
 e

ns
ur

es
 h

ea
lth

 a
nd

 s
ca

la
bi

lit
y

of
 w

or
ke

r
no

de
s.

 W
or

ke
r

no
de

s
pi

ck
 u

p
jo

b
pa

rt
s

fr
om

 t
he

 i
np

ut
 q

ue
ue

 a
ut

om
at

ic
al

ly

an
d

pe
rf

or
m

 s
in

gl
e

ta
sk

s
th

at
 a

re
 p

ar
t

of
 t

he
 l

is
t

of
 b

at
ch

pr

oc
es

si
ng

 s
te

ps
.

In
te

rim

re
su

lts

fr
om

w

or
ke

r
no

de
s

ar
e

st
or

ed

in

A

m
az

o
n

 S
3.

P
ro

gr
es

s
in

fo
rm

at
io

n
an

d
st

at
is

tic
s

ar
e

st
or

ed
 o

n
th

e
an

al
yt

ic
s

st
or

e.

T
hi

s
co

m
po

ne
nt

ca

n
be

ei

th
er

an

A
m

az
o

n
 S

im
p

le
D

B
 d

om
ai

n
or

 a
 r

el
at

io
na

l
da

ta
ba

se
 s

uc
h

as

an
 A

m
az

o
n

 R
el

at
io

n
al

 D
at

ab
as

e
S

er
vi

ce
 (

R
D

S
)

in
st

an
ce

.

O
pt

io
na

ly
,

co
m

pl
et

ed

ta
sk

s
ca

n
be

in

se
rt

ed

in

an

A
m

az
o

n

S
Q

S

qu
eu

e
fo

r
ch

ai
ni

ng

to

a
se

co
nd

pr

oc
es

si
ng

 s
ta

ge
.

7

Fi
gu

re
B
.1
:
In
te
ra
ct
io
ns

be
tw

ee
n
W
or
ke
r
no

de
s
an

d
St
or
ag

e
cl
us
te
r.

36

A
pp

en
di
x
C

So
ci
al

N
et
w
or
k
Se

rv
ic
e
C
ra
w
lin

g
T
as
ks

Fi
gu

re
C
.1
:
W
ei
bo

SN
S
in
te
ra
ct
io
ns

be
tw

ee
n
AW

S
&

O
ffl
in
e
ta
sk
s.

37

A
pp

en
di
x
D

C
ra
w
lin

g
T
ec
hn

ol
og

y
A
rc
hi
te
ct
ur
e

Fi
gu

re
D
.1
:
H
ig
h-
le
ve
lp

re
lim

in
ar
y
te
ch
no

lo
gy

st
ac
k
fr
om

da
ta

ca
pt
ur
e
to

re
pr
es
en
ta
tio

n.

38

